Вступление.
Прежде всего стоит сказать, что такое Код Хэмминга и для чего он, собственно, нужен. На Википедии даётся следующее определение:
Другими словами, это алгоритм, который позволяет закодировать какое-либо информационное сообщение определённым образом и после передачи (например по сети) определить появилась ли какая-то ошибка в этом сообщении (к примеру из-за помех) и, при возможности, восстановить это сообщение. Сегодня, я опишу самый простой алгоритм Хемминга, который может исправлять лишь одну ошибку.
Также стоит отметить, что существуют более совершенные модификации данного алгоритма, которые позволяют обнаруживать (и если возможно исправлять) большее количество ошибок.
Сразу стоит сказать, что Код Хэмминга состоит из двух частей. Первая часть кодирует исходное сообщение, вставляя в него в определённых местах контрольные биты (вычисленные особым образом). Вторая часть получает входящее сообщение и заново вычисляет контрольные биты (по тому же алгоритму, что и первая часть). Если все вновь вычисленные контрольные биты совпадают с полученными, то сообщение получено без ошибок. В противном случае, выводится сообщение об ошибке и при возможности ошибка исправляется.
Как это работает.
Для того, чтобы понять работу данного алгоритма, рассмотрим пример.
Подготовка
Допустим, у нас есть сообщение «habr», которое необходимо передать без ошибок. Для этого сначала нужно наше сообщение закодировать при помощи Кода Хэмминга. Нам необходимо представить его в бинарном виде.
На этом этапе стоит определиться с, так называемой, длиной информационного слова, то есть длиной строки из нулей и единиц, которые мы будем кодировать. Допустим, у нас длина слова будет равна 16. Таким образом, нам необходимо разделить наше исходное сообщение («habr») на блоки по 16 бит, которые мы будем потом кодировать отдельно друг от друга. Так как один символ занимает в памяти 8 бит, то в одно кодируемое слово помещается ровно два ASCII символа. Итак, мы получили две бинарные строки по 16 бит:
и
После этого процесс кодирования распараллеливается, и две части сообщения («ha» и «br») кодируются независимо друг от друга. Рассмотрим, как это делается на примере первой части.
Прежде всего, необходимо вставить контрольные биты. Они вставляются в строго определённых местах — это позиции с номерами, равными степеням двойки. В нашем случае (при длине информационного слова в 16 бит) это будут позиции 1, 2, 4, 8, 16. Соответственно, у нас получилось 5 контрольных бит (выделены красным цветом):
Было:
Стало:
Таким образом, длина всего сообщения увеличилась на 5 бит. До вычисления самих контрольных бит, мы присвоили им значение «0».
Вычисление контрольных бит.
Теперь необходимо вычислить значение каждого контрольного бита. Значение каждого контрольного бита зависит от значений информационных бит (как неожиданно), но не от всех, а только от тех, которые этот контрольных бит контролирует. Для того, чтобы понять, за какие биты отвечает каждых контрольный бит необходимо понять очень простую закономерность: контрольный бит с номером N контролирует все последующие N бит через каждые N бит, начиная с позиции N. Не очень понятно, но по картинке, думаю, станет яснее:
Здесь знаком «X» обозначены те биты, которые контролирует контрольный бит, номер которого справа. То есть, к примеру, бит номер 12 контролируется битами с номерами 4 и 8. Ясно, что чтобы узнать какими битами контролируется бит с номером N надо просто разложить N по степеням двойки.
Но как же вычислить значение каждого контрольного бита? Делается это очень просто: берём каждый контрольный бит и смотрим сколько среди контролируемых им битов единиц, получаем некоторое целое число и, если оно чётное, то ставим ноль, в противном случае ставим единицу. Вот и всё! Можно конечно и наоборот, если число чётное, то ставим единицу, в противном случае, ставим 0. Главное, чтобы в «кодирующей» и «декодирующей» частях алгоритм был одинаков. (Мы будем применять первый вариант).
Высчитав контрольные биты для нашего информационного слова получаем следующее:
и для второй части:
Вот и всё! Первая часть алгоритма завершена.
Декодирование и исправление ошибок.
Теперь, допустим, мы получили закодированное первой частью алгоритма сообщение, но оно пришло к нас с ошибкой. К примеру мы получили такое (11-ый бит передался неправильно):
Вся вторая часть алгоритма заключается в том, что необходимо заново вычислить все контрольные биты (так же как и в первой части) и сравнить их с контрольными битами, которые мы получили. Так, посчитав контрольные биты с неправильным 11-ым битом мы получим такую картину:
Как мы видим, контрольные биты под номерами: 1, 2, 8 не совпадают с такими же контрольными битами, которые мы получили. Теперь просто сложив номера позиций неправильных контрольных бит (1 + 2 + 8 = 11) мы получаем позицию ошибочного бита. Теперь просто инвертировав его и отбросив контрольные биты, мы получим исходное сообщение в первозданном виде! Абсолютно аналогично поступаем со второй частью сообщения.
Заключение.
В данном примере, я взял длину информационного сообщения именно 16 бит, так как мне кажется, что она наиболее оптимальная для рассмотрения примера (не слишком длинная и не слишком короткая), но конечно же длину можно взять любую. Только стоит учитывать, что в данной простой версии алгоритма на одно информационное слово можно исправить только одну ошибку.
Примечание.
На написание этого топика меня подвигло то, что в поиске я не нашёл на Хабре статей на эту тему (чему я был крайне удивлён). Поэтому я решил отчасти исправить эту ситуацию и максимально подробно показать как этот алгоритм работает. Я намеренно не приводил ни одной формулы, дабы попытаться своими словами донести процесс работы алгоритма на примере.
Кодер и декодер кода Хэмминга на VB. NET
Коды Хемминга позволяют закодировать исходное сообщение таким образом, чтобы после передачи его по зашумлённым каналам связи (например, по радиоканалу) и искажениям в принятой информации, можно было восстановить исходное сообщение.
1 Что такое код Хэмминга
Код Хэмминга добавляет к сообщению (информационные разряды) некоторое количество избыточной информации (проверочные разряды), сформированной определённым образом. Сообщение с добавленной проверочной информацией называется «кодовый символ» или «кодовое слово». Параметры кода указываются, например, так: (7, 4). Это означает, что длина кодового слова равна 7 битам, а длина сообщения – 4 бита. В зависимости от количества информационных и проверочных разрядов в кодовых словах существуют коды Хэмминга (7,4), (9,5), (11, 7), (15, 11), (31, 26), (63, 57) и т. д.
Общий вид формулы, по которой определяются виды кодов Хэмминга по соотношению числа информационных символов к проверочным: (2 x − 1, 2 x − x − 1), где x – натуральное число.
Чтобы восстановить закодированное сообщение, оно подвергается декодированию. При этом есть вероятность, что исходное сообщение нельзя будет восстановить, в случае превышения числом ошибок корректирующей способности кода. Однако помехоустойчивость закодированной информации всё равно выше, чем у незакодированной.
Из-за своей простоты, кодирование кодом Хемминга получило широкое распространение. Оно применяется, например, в беспроводной технологии WiFi, в системах хранения данных (RAID-массивах), в некоторых типах микросхем памяти, в схемотехнике и т. д.
Хорошая статья, описывающая принцип работы кода Хэмминга, есть, например, на Хабре.
2 Кодер кода Хэмминга (15, 11), написанный на VB. NET
Напишем кодировщик, который будет получать на вход 11 бит данных, кодировать их и возвращать 15 бит выходной информации. Если на вход пришло больше 11-ти бит данных, генерируется исключение. Если данных меньше 11-ти бит (например, 1 байт – 8 бит), то число дополняется нулями в старших разрядах до 11-ти бит и далее кодируется обычным образом. Возвращает кодер 16 бит (кодовое слово).
Код кодера Хэмминга (15, 11) на VB. NET (разворачивается)
Данный кодер легко переписать таким образом, чтобы он работал не с битовыми массивами типа BitArray(), а с байтами: на вход получал 11-разрядное число (от 0 до 0x7FF) и выдавал 2 закодированных байта:
3 Декодер кода Хэмминга (15, 11), написанный на VB. NET
Теперь пора поговорить о декодере. Декодер получает на вход 2 байта закодированных данных и возвращает 11 бит декодированных данных, которые распределены по двум байтам. Если в кодер были переданы 8 бит данных, то нас будет интересовать только первый байт, полученный с декодера.
Код декодера Хэмминга (15, 11) на VB. NET (разворачивается)
4 Консольная программа, кодирующая и декодирующая код Хемминга (15, 11)
Для быстрой проверки кодировщика и декодировщика кода Хэмминга (15, 11), используя вышеописанные классы, я написал две программы. Первая – кодер Хэмминга . Вводите 11-разрядное число (от 0 до 0x7FF или 2047), и на выходе получаем 16-разрядное число, представленное в виде двух байтов.
Внешний вид программы кодера кода Хэмминга (15, 11)
Вторая программа – декодер кода Хмминга (15, 11) .
Внешний вид программы декодера кода Хэмминга (15, 11)
Легко убедиться, что если мы внесём битовую ошибку при декодировании, то декодер восстановит исходное закодированное число.
Обе программы работают под ОС Windows и требуют. NET версии 3.5 . Выкладываю описанные программы.
https://habr. com/ru/post/140611/
https://soltau. ru/index. php/themes/dev/item/499-koder-i-dekoder-koda-khemminga-na-vb-net