Вступление.
Прежде всего стоит сказать, что такое Код Хэмминга и для чего он, собственно, нужен. На Википедии даётся следующее определение:
Другими словами, это алгоритм, который позволяет закодировать какое-либо информационное сообщение определённым образом и после передачи (например по сети) определить появилась ли какая-то ошибка в этом сообщении (к примеру из-за помех) и, при возможности, восстановить это сообщение. Сегодня, я опишу самый простой алгоритм Хемминга, который может исправлять лишь одну ошибку.
Также стоит отметить, что существуют более совершенные модификации данного алгоритма, которые позволяют обнаруживать (и если возможно исправлять) большее количество ошибок.
Сразу стоит сказать, что Код Хэмминга состоит из двух частей. Первая часть кодирует исходное сообщение, вставляя в него в определённых местах контрольные биты (вычисленные особым образом). Вторая часть получает входящее сообщение и заново вычисляет контрольные биты (по тому же алгоритму, что и первая часть). Если все вновь вычисленные контрольные биты совпадают с полученными, то сообщение получено без ошибок. В противном случае, выводится сообщение об ошибке и при возможности ошибка исправляется.
Как это работает.
Для того, чтобы понять работу данного алгоритма, рассмотрим пример.
Подготовка
Допустим, у нас есть сообщение «habr», которое необходимо передать без ошибок. Для этого сначала нужно наше сообщение закодировать при помощи Кода Хэмминга. Нам необходимо представить его в бинарном виде.

На этом этапе стоит определиться с, так называемой, длиной информационного слова, то есть длиной строки из нулей и единиц, которые мы будем кодировать. Допустим, у нас длина слова будет равна 16. Таким образом, нам необходимо разделить наше исходное сообщение («habr») на блоки по 16 бит, которые мы будем потом кодировать отдельно друг от друга. Так как один символ занимает в памяти 8 бит, то в одно кодируемое слово помещается ровно два ASCII символа. Итак, мы получили две бинарные строки по 16 бит:
и
После этого процесс кодирования распараллеливается, и две части сообщения («ha» и «br») кодируются независимо друг от друга. Рассмотрим, как это делается на примере первой части.
Прежде всего, необходимо вставить контрольные биты. Они вставляются в строго определённых местах — это позиции с номерами, равными степеням двойки. В нашем случае (при длине информационного слова в 16 бит) это будут позиции 1, 2, 4, 8, 16. Соответственно, у нас получилось 5 контрольных бит (выделены красным цветом):
Было: 
Стало: 
Таким образом, длина всего сообщения увеличилась на 5 бит. До вычисления самих контрольных бит, мы присвоили им значение «0».
Вычисление контрольных бит.
Теперь необходимо вычислить значение каждого контрольного бита. Значение каждого контрольного бита зависит от значений информационных бит (как неожиданно), но не от всех, а только от тех, которые этот контрольных бит контролирует. Для того, чтобы понять, за какие биты отвечает каждых контрольный бит необходимо понять очень простую закономерность: контрольный бит с номером N контролирует все последующие N бит через каждые N бит, начиная с позиции N. Не очень понятно, но по картинке, думаю, станет яснее:
Здесь знаком «X» обозначены те биты, которые контролирует контрольный бит, номер которого справа. То есть, к примеру, бит номер 12 контролируется битами с номерами 4 и 8. Ясно, что чтобы узнать какими битами контролируется бит с номером N надо просто разложить N по степеням двойки.
Но как же вычислить значение каждого контрольного бита? Делается это очень просто: берём каждый контрольный бит и смотрим сколько среди контролируемых им битов единиц, получаем некоторое целое число и, если оно чётное, то ставим ноль, в противном случае ставим единицу. Вот и всё! Можно конечно и наоборот, если число чётное, то ставим единицу, в противном случае, ставим 0. Главное, чтобы в «кодирующей» и «декодирующей» частях алгоритм был одинаков. (Мы будем применять первый вариант).
Высчитав контрольные биты для нашего информационного слова получаем следующее:
и для второй части: 
Вот и всё! Первая часть алгоритма завершена.
Декодирование и исправление ошибок.
Теперь, допустим, мы получили закодированное первой частью алгоритма сообщение, но оно пришло к нас с ошибкой. К примеру мы получили такое (11-ый бит передался неправильно):
Вся вторая часть алгоритма заключается в том, что необходимо заново вычислить все контрольные биты (так же как и в первой части) и сравнить их с контрольными битами, которые мы получили. Так, посчитав контрольные биты с неправильным 11-ым битом мы получим такую картину:
Как мы видим, контрольные биты под номерами: 1, 2, 8 не совпадают с такими же контрольными битами, которые мы получили. Теперь просто сложив номера позиций неправильных контрольных бит (1 + 2 + 8 = 11) мы получаем позицию ошибочного бита. Теперь просто инвертировав его и отбросив контрольные биты, мы получим исходное сообщение в первозданном виде! Абсолютно аналогично поступаем со второй частью сообщения.
Заключение.
В данном примере, я взял длину информационного сообщения именно 16 бит, так как мне кажется, что она наиболее оптимальная для рассмотрения примера (не слишком длинная и не слишком короткая), но конечно же длину можно взять любую. Только стоит учитывать, что в данной простой версии алгоритма на одно информационное слово можно исправить только одну ошибку.
Примечание.
На написание этого топика меня подвигло то, что в поиске я не нашёл на Хабре статей на эту тему (чему я был крайне удивлён). Поэтому я решил отчасти исправить эту ситуацию и максимально подробно показать как этот алгоритм работает. Я намеренно не приводил ни одной формулы, дабы попытаться своими словами донести процесс работы алгоритма на примере.
Курсовая работа Код Хемминга
учебно-методическое пособие по информатике и икт (10, 11 класс) по теме

На сегодняшний день в мире передается огромное количество информации, хотя системы передачи данных отвечают всем требованиям. Они не являются столь совершенными.
Скачать:
| Вложение | Размер |
|---|---|
| korobeynikova. docx | 128.8 КБ |
Предварительный просмотр:
Федеральное государственное бюджетное образовательное учреждение
«Омский государственный педагогический университет»
Факультет математики, информатики, физики и технологии
Кафедра прикладной информатики и математики
Направление: педагогическое образование
Профиль: Информатика и Технология
Дисциплина: Теоретические основы информатики
«__» _______________ 20___г.
Введение
На сегодняшний день в мире передается огромное количество информации, хотя системы передачи данных отвечают всем требованиям. Они не являются столь совершенными. При передаче данных могут возникать помехи. Помехоустойчивость – способность системы осуществлять прием информации в условиях наличия помех в линии связи и искажений во внутри аппаратных трактах. Помехоустойчивость обеспечивает надежность и достоверность передаваемой информации (данных).Управление правильностью передачи информации выполняется с помощью помехоустойчивого кодирования. Есть коды, обнаруживающие ошибки, и корректирующие коды, которые еще и исправляют ошибки. Помехозащищенность достигается с помощью введения избыточности, дополнительных битов. В симплексных каналах связи устраняют ошибки с помощью корректирующих кодов. В дуплексных–достаточно применения кодов, обнаруживающих ошибки. [1]
История развития помехоустойчивого кодирования началась еще с 1946г., а именно, после публикации монографии американского ученого К. Шеннона «Работы по теории информации и кибернетике».В этой работе он не показал как построить эти коды, а доказал их существование. Важно отметить, что результаты работы К. Шеннона опирались на работы советских ученых, таких как: А. Я. Хинчин, Р. Р. Варшамов и др. На сегодняшний день проблема передачи данных является особо актуальной, т.к. сбой при передаче может вызвать не только искажение сообщения в целом, но и полную потерю информации. Для этого и существуют помехоустойчивые коды, способные предотвратить потерю и искажение информации. В настоящее время существует ряд разновидностей помехоустойчивых кодов, обеспечивающих высокую достоверность при малой величине избыточности и простоте технической реализации кодирующих и декодирующих устройств. Принципиально коды могут быть использованы как для обнаружения, так и для исправления ошибок. Однако удобства построения кодирующих и декодирующих устройств определили преимущественное применение лишь некоторых из них, в частности корректирующего кода Хемминга.
Цель данной курсовой работы: Ознакомление с помехоустойчивым кодированием и изучение кода Хемминга.
1) Ознакомиться с видами помехоустойчивого кодирования;
2) Ознакомиться с кодом Хемминга, как с одним из видов помехоустойчивого кодирования;
3) Изучить алгоритм построения кода Хемминга.
Объект исследования : помехоустойчивое кодирование.
Предмет исследования : код Хемминга.
Данная курсовая работа состоит из титульного листа, оглавления, введения, двух глав (теоретической и практической), заключения и списка литературы.
Глава 1. Теоретические основы изучения помехоустойчивого кодирования
1.1. Виды помехоустойчивого кодирования
В мире существует немало различных помех и искажений, это могут быть как звуковые искажения, так и на графике. Мы рассмотрим, что понимается под помехой в кодировании информации. Под помехой понимается любое воздействие, накладывающееся на полезный сигнал изатрудняющее его прием. Ниже приведена классификация помех и их источников.
Рис. 1.Помехи и их источники
Внешние источники помех вызывают в основном импульсные помехи, а внутренние – флуктуационные. Помехи, накладываясь на видеосигнал, приводят к двум типам искажений: краевыеи дробления. Краевые искажения связаны со смещением переднего или заднего фронта импульса. Дробление связано с дроблением единого видеосигнала на некоторое количество более коротких сигналов [2].
Приведем классификацию помехоустойчивых кодов.
1) Обнаруживающие ошибки:
- с проверкой на четность;
- корреляционные;
- Хэмминга;
- БЧХ;
2) Корректирующие коды:
А) С пороговым декодированием;
Б) По макс. правдоподобия;
В) С последовательным декодированием.
Теперь рассмотрим более подробно каждый вид кодирования.
Код с проверкой на четность .
Проверка четности – очень простой метод для обнаружения ошибок в передаваемом пакете данных. С помощью данного кода мы не можем восстановить данные, но можем обнаружить только лишь одиночную ошибку.
В каждом пакет данных есть один бит четности, или, так называемый, паритетный бит. Этот бит устанавливается во время записи (или отправки) данных, и затем рассчитывается и сравнивается во время чтения (получения) данных. Он равен сумме по модулю 2 всех бит данных в пакете. То есть число единиц в пакете всегда будет четно. Изменение этого бита (например с 0 на 1) сообщает о возникшей ошибке.
Начальные данные: 1111
Данные после кодирования: 11110 (1 + 1 + 1 + 1 = 0 (mod 2))
Принятые данные: 10110 (изменился второй бит)
Как мы видим, количество единиц в принятом пакете нечетно, следовательно, при передаче произошла ошибка [3].
Корреляционные коды (код с удвоением ).
Элементы данного кода заменяются двумя символами, единица «1» преобразуется в 10, а ноль «0» в 01.
Вместо комбинации 1010011 передается 10011001011010. Ошибка обнаруживается в том случае, если в парных элементах будут одинаковые символы 00 или 11 (вместо 01 и 10) [2].
Код с постоянным весом.
Одним из простейших блочных неразделимых кодов является код с постоянным весом. Примером такого кода может служить семибитный телеграфный код МТК–3, в котором каждая разрешенная кодовая комбинация содержит три единицы и четыре нуля (рис.2). Весом кодовой комбинации называют число содержащихся в ней единиц. В рассматриваемом коде вес кодовых комбинаций равен трем.
Число разрешенных кодовых комбинаций в кодах с постоянным весом определяется как количество сочетаний из n символов по g и равно
Где n – длина кодовой комбинации, а g – вес разрешенной кодовой комбинации. Для кода МТК-3 число разрешенных кодовых комбинаций равно . Таким образом, из общего числа комбинаций только 35 используются для передачи сообщений[4].
Рис.2. Примеры разрешенных и запрещенных комбинаций кода МТК-3
К исходной комбинации добавляется такая же комбинация по длине. В линию посылается удвоенное число символов. Если в исходной комбинации четное число единиц, то добавляемая комбинация повторяет исходную комбинацию, если нечетное, то добавляемая комбинация является инверсной по отношению к исходной.
Прием инверсного кода осуществляется в два этапа. На первом этапе суммируются единицы в первой основной группе символов. Если число единиц четное, то контрольные символы принимаются без изменения, если нечетное, то контрольные символы инвертируются. На втором этапе контрольные символы суммируются с информационными символами по модулю два. Нулевая сумма говорит об отсутствии ошибок. При ненулевой сумме, принятая комбинация бракуется. Покажем суммирование для принятых комбинаций без ошибок (1,3) и с ошибками (2,4).
Обнаруживающие способности данного кода достаточно велики. Данный код обнаруживает практически любые ошибки, кроме редких ошибок смещения, которые одновременно происходят как среди информационных символов, так и среди соответствующих контрольных. Например, при k =5, n=10 и . Коэффициент обнаружения будет составлять [2].
По сравнению с простым кодом, код Грея позволяет уменьшить ошибки неоднозначности считывания, а также ошибки из-за помех в канале. Обычно этот код применяется для аналогово-цифрового преобразования непрерывных сообщений.
Недостатком кода Грея является его невесомость, т. е. вес единицы не определяется номером разряда. Информацию в таком виде трудно обрабатывать на ЭВМ. Декодирование кода также связано с большими затратами. Поэтому перед вводом в ЭВМ (или перед декодированием) код Грея преобразуется в простой двоичный код, который удобен для ЭВМ и легко декодируется.
Для перевода простого двоичного кода в код Грея нужно:
- под двоичным числом записать такое же число со сдвигом вправо на один разряд (при этом младший разряд сдвигаемого числа теряется);
- произвести поразрядное сложение двух чисел по модулю 2 (четности). [5].
Таким образом, мы рассмотрели виды помехоустойчивого кодирования и увидели, что их существует не так уж и мало. Каждый код по своему уникален и полезен для кодирования информации. Теперь мы ознакомимся с кодом Хемминга подробнее.
1.2.Характеристика кода Хэмминга при помехоустойчивом кодировании
В середине 40-х годов Ричард Хемминг работал в знаменитых Лабораториях Белла на счётной машине Bell Model V. Это была электромеханическая машина, использующая релейные блоки, скорость которых была очень низка: один оборот за несколько секунд. Данные вводились в машине с помощью перфокарт, и поэтому в процессе чтения часто происходили ошибки. В рабочие дни использовались специальные коды, чтобы обнаруживать и исправлять найденные ошибки, при этом оператор узнавал об ошибке по свечению лампочек, исправлял и запускал машину. В выходные дни, когда не было операторов, при возникновении ошибки машина автоматически выходила из программы и запускала другую.
Р. Хемминг часто работал в выходные дни, и все больше и больше раздражался, потому что часто был должен перегружать свою программу из-за ненадежности перфокарт. На протяжении нескольких лет он проводил много времени над построением эффективных алгоритмов исправления ошибок. В 1950 году он опубликовал способ, который на сегодняшний день мы знаем как код Хемминга.[6.].
Код Хемминга, как и любой ( n, k ) код, содержит k информационных и избыточных символов. Избыточная часть кода строится таким образом, чтобы при декодировании можно было бы установить не только факт наличия ошибок в принятой – комбинации, но и указать номер позиции, в которой произошла ошибка. Это достигается за счет многократной проверки принятой комбинации на четность. Каждой проверкой должны охватываться часть информационных символов и один из избыточных символов. При каждой проверке получают двоичный контрольный символ. Если результат проверки дает четное число, то контрольному символу присваивается значение 0, если нечетное число – 1. В результате всех проверок получается p — разрядное двоичное число, указывающее номер искаженного символа. Для исправления ошибки достаточно лишь изменить значение данного символа на обратное. [7]
К ним обычно относятся коды с минимальным кодовым расстоянием исправляющие все одиночные ошибки, и коды с расстоянием исправляющие все одиночные и обнаруживающие все двойные ошибки. Длина кода Хэмминга:
(r – количество проверочных разрядов).
Характерной особенностью проверочной матрицы кода с является то, что ее столбцы представляют собой любые различные ненулевые комбинации длиной r. Например, при r =4 и n =5 для кода (15,11), проверочная матрица может иметь следующий вид (рис.3)
Рис.3. Проверочная матрица
Перестановкой столбцов, содержащих одну единицу, данную матрицу можно привести к виду(рис.4)
Рис. 4.Измененная матрица
Использование такого кода позволяет исправить любую одиночную ошибку или обнаружить произвольную ошибку кратности два. Если информационные и проверочные разряды кода нумеровать слева направо, то в соответствии с матрицей получаем систему проверочных уравнений, с помощью которых вычисляем проверочные разряды(рис.5):
Рис.5. Система проверочных уравнений
где — — проверочные разряды; — — информационные разряды
Двоичный код Хэмминга с кодовым расстоянием получается путем добавления к коду Хэмминга с одного проверочного разряда, представляющего собой результат суммирования по модулю два всех разрядов кодового слоя. Длина кода при этом разрядов, из которых являются проверочными.
Операция кодирования может выполняться в два этапа. На первом этапе определяется кодовая комбинация с использованием матрицы H, соответствующей коду с на втором — добавляется один проверочный разряд, в котором записывается результат суммирования по модулю два всех разрядов кодового слова, полученного на первом этапе. Операция декодирования также состоит из двух этапов. На первом вычисляется синдром, соответствующий коду на втором — проверяется последнее проверочное соотношение.[8]
Таким образом, ознакомившись с характеристикой кода Хемминга, важно сказать, что состоит код из двух частей и предполагает надежную работу нахождения ошибок и корректировки сообщений.
1.3.Алгоритмы использования кода Хэмминга для нахождения ошибок
Код Хэмминга представляет собой блочный код, который позволяет выявить и исправить ошибочно переданный бит в пределах переданного блока. Код Хэмминга состоит из двух частей. Первая часть кодирует исходное сообщение, вставляя в него в определённых местах контрольные биты (вычисленные особым образом). Вторая часть получает входящее сообщение и заново вычисляет контрольные биты (по тому же алгоритму, что и первая часть). Если все вновь вычисленные контрольные биты совпадают с полученными, то сообщение получено без ошибок. В противном случае, выводится сообщение об ошибке и при возможности ошибка исправляется.
Рассмотрим алгоритм построения кода для исправления одиночной ошибки.
1.По заданному количеству информационных символов – k, либо информационных комбинаций , используя соотношения: , (3)
Вычисляют основные параметры кода m и n .
2.Определяем рабочие и контрольные позиции кодовой комбинации. Номера контрольных позиций определяются по закону , где i= 1,2,3,…т. е. они равны 1,2,4,8,16,…а остальные позиции являются рабочими.
3. Определяем значения контрольных разрядов (0 или 1) при помощи многократных проверок кодовой комбинации на четность. Количество проверок равно . В каждую проверку включается один контрольный и определенные проверочные биты. Если результат проверки дает четное число, то контрольному биту присваивается значение – 0, в противном случае – 1. Номера информационных бит, включаемых в каждую проверку, определяются по двоичному коду натуральных n — чисел разрядностью – m (табл. 2, для m = 4) или при помощи проверочной матрицы H(mn), столбцы которой представляют запись в двоичной системе всех целых чисел от 1 до перечисленных в возрастающем порядке.
Количество разрядов m – определяет количество проверок.
В первую проверку включают коэффициенты, содержащие 1 в младшем (первом) разряде, т. е. b1 , b3 , b5 и т. д.
Во вторую проверку включают коэффициенты, содержащие 1 во втором разряде, т. е. b2 , b3 , b6 и т. д.
В третью проверку – коэффициенты которые содержат 1 в третьем разряде и т. д.
https://habr. com/ru/post/140611/
https://nsportal. ru/shkola/informatika-i-ikt/library/2016/10/03/kursovaya-rabota-kod-hemminga